Why mammals more susceptible to the hepatotoxic microcystins than fish: evidences from plasma and albumin protein binding through equilibrium dialysis.

نویسندگان

  • Wei Zhang
  • Gaodao Liang
  • Laiyan Wu
  • Xun Tuo
  • Wenjing Wang
  • Jun Chen
  • Ping Xie
چکیده

To elucidate the interspecies variation of susceptibility to microcystins (MCs), fresh plasma and purified albumin from six kinds of mammals and fish were used in toxins-substances binding test. Protein contents in the test plasma were analyzed and the binding characteristics to MCs were compared. Two kinds of widely observed MCs, microcystin-LR (MC-LR) and microcystin-RR (MC-RR) were tested and data were collected through the method of equilibrium dialysis. It was found that total plasma protein and albumin content in mammals were nearly two times and four times higher than that in fish, respectively. In the test range of 0-100 μg/mL, binding rates of fish plasma to MCs were considered significant lower (p < 0.01) than that of mammals. And human plasma demonstrated the highest binding rate in mammals. In all the test species, plasma protein binding rates of MC-RR were significantly higher than MC-LR (p < 0.01). Besides, binding profiles of albumin were acquired under the protein content of 0.67 mg/mL. Human serum albumin demonstrated the highest affinity to MCs throughout the six species and differences among the other five species were considered not significant (p > 0.05). From the view of protein binding, it is concluded that both the variation of plasma protein composition and albumin binding characteristic could influence the existing form of MCs in circulation, change MCs utilization, alter MCs half-life and further contribute to the difference of susceptibility between mammals and fish.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INVESTIGATIONS ON THE DRUG-PROTEIN IN TERAC TION OF CERTAIN NEW POTENTIAL LOCAL ANAESTHETICS

Generally, plasma proteins owe their binding capacity to the presence of aminoacid units which enter into intra- and intermolecular hydrophobic bonding with a diverse range of endo- and exogenous chemical substances. The intermolecular interactions between the hydrophobic areas of drug molecules and those of plasma proteins play an important role in drug-macromolecular complex formation and...

متن کامل

tudy on sex steroid-binding proteins (with emphasize on 17 -estradiol) in plasma of female and juvenile kutum (Rutilus frisii kutum)

A sex steroid-binding protein (SBP) that binds to 17 b-estradiol with high affinity and moderate capacity was identified in the plasma of female and juvenile of kutum (Rutilus frisii kutum) sampled during the early stage of gonadal maturation in October and prior to spawning in March. Mean maximum specific binding (Bmax) and equilibrium dissociation constant (Kd) of the fish were as follows: In...

متن کامل

Isothermal Titration Calorimetry and Molecular Dynamics Simulation Studies on the Binding of Indometacin with Human Serum Albumin

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Drug binding to HSA is crucial to study the absorption, distribution, metabolism, efficiency and bioavailability of drug molecules. In this study, isothermal titration calorimetry and molecular dynamics simulation of HSA and its complex with indometacin (IM) were performed to investigate thermodynamics parameters and th...

متن کامل

Molecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...

متن کامل

Evolutionary Analysis of Mammalian ACE2 and the Key Residues Involved in Binding to the Spike Protein Revealed Potential SARS-CoV-2 Hosts

Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spilled over to humans via wild mammals, entering the host cell using angiotensin-converting enzyme 2 (ACE2) as receptor through Spike (S) protein binding. While SARS-CoV-2 became fully adapted to humans and globally spread, some mammal species were infected back. The present study evaluated the potential risk of mammals...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecotoxicology

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 2013